Prediction of Unemployment Rates in East Java Region Using Multiple Linear Regression Method

  • Muhammad Farhan Alauddin Informatics Engineering, National Institute of Technology Malang
  • Sentot Achmadi Informatics Engineering, National Institute of Technology Malang
  • Joseph Dedy Irawan Informatics Engineering, National Institute of Technology Malang
Keywords: Multiple linear regression, central statistics agency, BPS, unemployment rate, east java

Abstract

Unemployment is a major problem for developing countries, including Indonesia. The average unemployment rate in East Java is 5.202 percent from 2004 to 2023, according to data from Badan Pusat Statistik (BPS). These figures show that unemployment is still a major problem for local governments, despite changes. The purpose of this study is to create an application that can predict the number of unemployed in the future. The method used is multiple linear regression where this method was chosen because it can show how the year and labor force participation rate, which are two independent variables, correlate with the unemployment rate as the dependent variable. The data used comes from BPS and covers 19 years. This prediction model is integrated into a web-based platform to make the research results easier to access and use. This platform will display data and analysis results interactively, so that it can be used by local governments, academics, and other individuals looking for information about unemployment. The results of the study show that the regression model created is quite accurate. Based on the results of testing that has been carried out on the existing features, the system has displayed the appropriate output.

Downloads

Download data is not yet available.

References

[1] S. Sarbaini, W. Saputri, Nazaruddin, and F. Muttakin, "Cluster analysis menggunakan algoritma fuzzy K-means untuk tingkat pengangguran di Provinsi Riau," Jurnal Teknologi dan Manajemen Industri Terapan, vol. 1, no. 2, pp. 78–84, 2022. DOI: https://doi.org/10.55826/tmit.v1iII.30
[2] N. Ariyani and A. Z. Arifin, "Prediksi tingkat pengangguran di Kabupaten Tuban tahun 2020 menggunakan metode regresi linear sederhana," MathVision: Jurnal Matematika, vol. 3, no. 1, pp. 6–13, 2021. DOI: https://doi.org/10.55719/mv.v3i1.245
[3] A. Permana, B. Irawan, and A. Bahtiar, "Prediksi jumlah pengangguran di Jawa Barat dengan menggunakan algoritma regresi linier," JATI: Jurnal Mahasiswa Teknik Informatika, vol. 8, no. 5, pp. 10170–10176, 2024. DOI: https://doi.org/10.36040/jati.v8i5.10627
[4] Singarimbun, A.S. and Arianto, D.B., 2024. Prediksi Jumlah Pengangguran Di Indonesia Berdasarkan Data Time Series Menggunakan Regresi Linear. Journal of Information System and Computer, 4(2), pp.58-62. DOI: https://doi.org/10.34001/jister.v4i2.1200
[5] A. A. Saputra, M. Munir, and Z. D. R. A. Putra, "Peramalan pendapatan dari penjualan bawang merah menggunakan metode regresi linear berganda," Seminar Nasional Teknologi & Sains, vol. 2, no. 1, pp. 383–389, Jan. 2023. DOI: https://doi.org/10.29407/stains.v2i1.2900
[6] R. Andia, K. Kaslani, S. E. Permana, and T. Handayani, "Peramalan hasil panen padi Kabupaten Cirebon menggunakan algoritma regresi linear berganda," JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 1, pp. 738–747, 2024. DOI: https://doi.org/10.36040/jati.v8i1.8446
[7] A. Abdurrasyid, I. Indrianto, and M. N. I. Susanti, "Prediksi kuota pemesanan bahan bakar pada SPBU dengan metode regresi linear berganda," Petir, vol. 14, no. 2, pp. 130–138, 2021. DOI: https://doi.org/10.33322/petir.v14i2.1142
[8] A. A. Muhartini, O. Sahroni, S. D. Rahmawati, T. Febrianti, and I. Mahuda, "Analisis peramalan jumlah penerimaan mahasiswa baru dengan menggunakan metode regresi linear sederhana," Jurnal Bayesian: Jurnal Ilmiah Statistika dan Ekonometrika, vol. 1, no. 1, pp. 17–23, 2021. DOI: https://doi.org/10.46306/bay.v1i1.2
[9] F. K. Zega, T. H. S. Hulu, S. Zebua, and E. Zebua, "Analisis peramalan (forecasting) penjualan tahu dengan metode single moving average untuk mengoptimalkan produksi pada Pabrik Tahu Nias," Innovative: Journal of Social Science Research, vol. 4, no. 1, pp. 2931–2942, 2024. DOI: https://doi.org/10.31004/innovative.v4i1.8226
[10] R. Wicaksono, J. D. Irawan, and S. A. Wibowo, "Sistem peramalan curah hujan menggunakan metode regresi linear berganda berbasis IoT," JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 4, pp. 2103–2112, 2023. DOI: https://doi.org/10.36040/jati.v7i4.7350
[11] A. Y. Maulana, Y. A. Pranoto, and F. X. Ariwibisono, "Peramalan penjualan thrift pada toko Klasswear menggunakan metode regresi linear berbasis website," JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 4, pp. 2175–2181, 2023. DOI: https://doi.org/10.36040/jati.v7i4.7442
[12] A. H. Al Haddad, A. F. Setiawan, and N. Vendyansyah, "Analisis perbandingan sistem peramalan penjualan barang menggunakan metode double exponential dan regresi linear," JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 5, pp. 8453–8460, 2024. DOI: https://doi.org/10.36040/jati.v8i5.10558
[13] R. P. B. Pasifik, A. F. Setiawan, and S. A. Wibowo, "Analisis perbandingan peramalan produksi gula dengan algoritma single exponential smoothing dan double exponential smoothing berbasis website," JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 5, pp. 8292–8300, 2024. DOI: https://doi.org/10.36040/jati.v8i5.10518
[14] T. Susilawati, F. Yuliansyah, M. Romzi, and R. Aryani, "Membangun website toko online Pempek Nthree menggunakan PHP dan MySQL," JTIM: Jurnal Teknik Informatika Mahakarya, vol. 3, no. 1, pp. 35–44, 2020. https://journal.unmaha.ac.id/index.php/jtim/article/view/19
[15] L. S. Wirawan, S. Achmadi, and Y. A. Pranoto, "Analisis perbandingan metode double exponential smoothing & regresi linear dalam peramalan penjualan hasil olahan kayu," JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 5, pp. 8274–8283, 2024. DOI: https://doi.org/10.36040/jati.v8i5.10513
[16] A. A. Fitri, S. Achmadi, and N. Vendyansyah, "Sistem peramalan penjualan tahu menggunakan double exponential smoothing," JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 5, pp. 8267–8273, 2024. DOI: https://doi.org/10.36040/jati.v8i5.10512
Published
2025-02-28
How to Cite
[1]
M. Farhan Alauddin, S. Achmadi, and J. Dedy Irawan, “Prediction of Unemployment Rates in East Java Region Using Multiple Linear Regression Method”, JESICA, vol. 2, no. 1, pp. 8-19, Feb. 2025.