THE DISCRIMINANT ANALYSIS FUNCTION WAS IMPLEMENTED TO PREDICT THE PRESENCE OF DIABETES
Abstract
Diabetes is a condition blood sugar concentrations are high and there is something wrong with insulin inside the body. A hormone called insulin controls the equilibrium of blood sugar concentration in humans. Diabetes has high-risk health, such as CKD, CVD, skin disease or even blindness. The reason people suffer from diabetes is caused of bad consumption habits. Some symptoms of diabetes are frequent urination and feeling hungry too quickly. Diabetes is sometimes difficult to diagnose, which is why it is also referred to as the silent killer. A preventive way is an early prediction of diabetes disease. This is very important to do. In this study, the discriminant analysis algorithm is used along with machine learning techniques. In this study, machine learning techniques are used. Its name is discriminant analysis algorithm. Two popular versions are linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA). This method is used because it is suitable for high-dimensional data and the discriminant analysis algorithm has minimal parameters. The discriminant analysis algorithm uses few parameters and this method appropriate for high-dimensional data. We'll compare the two approaches to find a way to demonstrate their dependability. Both approaches would be contrasted. Based on the result, QDA has the best performance. QDA can produce accuracy = 93.7%, TPR = 93.7%, precision = 94.3%, recall = 93.7% and F-measure = 93.9%. FPR of QDA is the lowest one, it is 1.02%. It means QDA has a small error in making predictions. Overall, based on the result QDA is the proven and proper method for detecting diabetes disease
References
[2] H. Abbas, L. Alic, M. Rios, M. Abdul-Ghani, and K. Qaraqe, “Predicting diabetes in healthy population through machine learning,” Proc. - IEEE Symp. Comput. Med. Syst., vol. 2019-June, pp. 567–570, 2019, doi: 10.1109/CBMS.2019.00117.
[3] K. Vijiyakumar, B. Lavanya, I. Nirmala, and S. Sofia Caroline, “Random forest algorithm for the prediction of diabetes,” 2019 IEEE Int. Conf. Syst. Comput. Autom. Networking, ICSCAN 2019, pp. 1–5, 2019, doi: 10.1109/ICSCAN.2019.8878802.
[4] L. Priyadarshini and L. Shrinivasan, “Design of an ANFIS based Decision Support System for Diabetes Diagnosis,” Proc. 2020 IEEE Int. Conf. Commun. Signal Process. ICCSP 2020, pp. 1486–1489, 2020, doi: 10.1109/ICCSP48568.2020.9182163.
[5] G. A. Pethunachiyar, “Classification of diabetes patients using kernel based support vector machines,” 2020 Int. Conf. Comput. Commun. Informatics, ICCCI 2020, pp. 22–25, 2020, doi: 10.1109/ICCCI48352.2020.9104185.
[6] I. O. Lixandru-Petre, “A fuzzy system approach for diabetes classification,” 2020 8th E-Health Bioeng. Conf. EHB 2020, 2020, doi: 10.1109/EHB50910.2020.9279882.
[7] Y. Sinatrya and L. A. Wulandhari, “Deteksi Diabetes Melitus Untuk Wanita Dan Penyusunan Menu Sehat Dengan Pendekatan Adaptive Neuro Fuzzy Inference System (Anfis) Dan Algoritma Genetika (Ga),” J. Tek. Inform., vol. 12, no. 1, pp. 39–58, 2019, doi: 10.15408/jti.v12i1.9578.
[8] N. A. Bhat, K. P. Muliyala, and S. Kumar, “Psychological Aspects of Diabetes,” Eur. Med. J., no. November, pp. 90–98, 2020, doi: https://doi.org/10.33590/emjdiabet/20-00174.
[9] R. Katarya and S. Jain, “Comparison of different machine learning models for diabetes detection,” Proc. 2020 IEEE Int. Conf. Adv. Dev. Electr. Electron. Eng. ICADEE 2020, no. Icadee, pp. 0–4, 2020, doi: 10.1109/ICADEE51157.2020.9368899.
[10] N. Mohan and V. Jain, “Performance Analysis of Support Vector Machine in Diabetes Prediction,” Proc. 4th Int. Conf. Electron. Commun. Aerosp. Technol. ICECA 2020, pp. 2020–2022, 2020, doi: 10.1109/ICECA49313.2020.9297411.
[11] S. Benbelkacem and B. Atmani, “Random forests for diabetes diagnosis,” 2019 Int. Conf. Comput. Inf. Sci. ICCIS 2019, pp. 1–4, 2019, doi: 10.1109/ICCISci.2019.8716405.
[12] A. S. Alanazi and M. A. Mezher, “Using Machine Learning Algorithms for Prediction of Diabetes Mellitus,” 2020 Int. Conf. Comput. Inf. Technol. ICCIT 2020, vol. 02, pp. 55–57, 2020, doi: 10.1109/ICCIT-144147971.2020.9213708.
[13] D. Vigneswari, N. K. Kumar, V. Ganesh Raj, A. Gugan, and S. R. Vikash, “Machine Learning Tree Classifiers in Predicting Diabetes Mellitus,” 2019 5th Int. Conf. Adv. Comput. Commun. Syst. ICACCS 2019, pp. 84–87, 2019, doi: 10.1109/ICACCS.2019.8728388.
[14] A. M. Posonia, S. Vigneshwari, and D. J. Rani, “Machine learning based diabetes prediction using decision tree J48,” Proc. 3rd Int. Conf. Intell. Sustain. Syst. ICISS 2020, pp. 498–502, 2020, doi: 10.1109/ICISS49785.2020.9316001.
[15] A. Rashid, “Diabetes Dataset,” vol. 1, 2020, doi: 10.17632/WJ9RWKP9C2.1.
[16] Kedar Potdar, Taher S. Pardawala, and Chinmay D. Pai, “A Comparative Study of Categorical Variable Encoding Techniques for Neural Network Classifiers,” Int. J. Comput. Appl., vol. 175, no. 4, p. 375, 2017, doi: 10.5120/ijca2017915495.
[17] M. Anshori, N. Rikatsih, M. S. Haris, T. Kesehatan, I. Rs, and S. Kesdam, “PREDIKSI PASIEN DENGAN PENYAKIT KARDIOVASKULAR MENGGUNAKAN RANDOM FOREST,” TEKTRIKA, vol. 7, no. 2, pp. 58–64, 2023.
[18] H. Henderi, “Comparison of Min-Max normalization and Z-Score Normalization in the K-nearest neighbor (kNN) Algorithm to Test the Accuracy of Types of Breast Cancer,” Int. J. Informatics Inf. Syst., vol. 4, no. 1, pp. 13–20, 2021, doi: 10.47738/ijiis.v4i1.73.
[19] M. Anshori, M. S. Haris, and W. Teja Kusuma, “Penerapan Backpropagation Neural Network (BPNN) Untuk Prediksi Kecanduan Smartphone Pada Remaja,” Cices, vol. 9, no. 2, pp. 192–202, 2023, doi: 10.33050/cices.v9i2.2701.
[20] M. Anshori, “Prediction Result of Dota 2 Games Using Improved SVM Classifier Based on Particle Swarm Optimization,” 2018 Int. Conf. Sustain. Inf. Eng. Technol., pp. 121–126, 2018, doi: 10.1109/SIET.2018.8693204.
[21] S. Guo and H. Tracey, “Discriminant Analysis for Radar Signal Classification,” IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 4, pp. 3134–3148, 2020, doi: 10.1109/TAES.2020.2965787.
[22] M. Anshori, F. Mahmudy, and A. A. Supianto, “Preprocessing Approach for Tuberculosis DNA Classification using Support Vector Machines ( SVM ),” J. Inf. Technol. Comput. Sci., vol. 4, no. 3, pp. 233–240, 2019, doi: https://doi.org/10.25126/jitecs.201943113.
[23] G. B. G. Pereira, L. P. Fernandes, J. M. R. D. S. Neto, H. D. D. M. Braz, and L. D. S. Sauer, “A comparative study of linear discriminant analysis and an artificial neural network performances in breast cancer diagnosis,” 2020 Ieee Andescon, Andescon 2020, 2020, doi: 10.1109/ANDESCON50619.2020.9272057.
[24] J. Ghosh and S. B. Shuvo, “Improving Classification Model’s Performance Using Linear Discriminant Analysis on Linear Data,” 2019 10th Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2019, pp. 8–12, 2019, doi: 10.1109/ICCCNT45670.2019.8944632.
[25] A. Setya Budi, N. Merlina, M. Arie Hasan, D. Riana, and S. Hadianti, “Classification of Lycopersicon Esculentum Fruit Based on Color Features with Linear Discriminant Analysis (LDA) Method,” Proc. 2019 4th Int. Conf. Informatics Comput. ICIC 2019, pp. 5–10, 2019, doi: 10.1109/ICIC47613.2019.8985787.
[26] M. R. Wasef and N. Rafla, “HLS implementation of linear discriminant analysis classifier,” Proc. - IEEE Int. Symp. Circuits Syst., vol. 2020-Octob, no. 1, pp. 2–5, 2020, doi: 10.1109/iscas45731.2020.9181270.
[27] Y. Wu, Y. Qin, and M. Zhu, “Quadratic Discriminant Analysis For High-Dimensional Data,” Stat. Sin., vol. 29, pp. 939–960, 2019, doi: 10.5705/ss.202016.0034.
[28] T. M. Rausch, N. D. Derra, and L. Wolf, “Predicting online shopping cart abandonment with machine learning approaches,” Int. J. Mark. Res., vol. 64, no. 1, pp. 89–112, 2022, doi: 10.1177/1470785320972526.
[29] M. Anshori and M. S. Haris, “Predicting Heart Disease using Logistic Regression,” Knowl. Eng. Data Sci., vol. 5, no. 2, p. 188, 2022, doi: 10.17977/um018v5i22022p188-196.
[30] E. Frank, M. A. Hall, and I. H. Witten, “The WEKA workbench,” Data Min., pp. 553–571, 2017, doi: 10.1016/b978-0-12-804291-5.00024-6.
Copyright (c) 2024 Journal of Enhanced Studies in Informatics and Computer Applications
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.