Use Discriminant Analysis to Identify Eroticism-Related Terms in The Lyrics of Dangdut Songs
Abstract
The song "Dangdut" is one of the most popular songs in Indonesia, having gained popularity from the 1960s until the present. It's even been acknowledged as authentic Indonesian music. There are both positive and negative effects on the pendengarnya of lagu dangdut. Positive dampening can lower stress levels, and negative dampening occurs when emotions are heightened. If this was brought up by a young child who was not yet fully grown, it would give them a hard time and negatively impact their journey. According to this framework, it is recommended that any eroticism in the lyrics of dance music be identified. It is therefore advised to look for signs of sexuality in the lyrics of dangdut songs. The intention is to restrict and filter the music that kids can listen to. Using LDA and QDA classifiers in conjunction with natural language processing is the suggested approach. According to research findings, LDA can identify more than QDA. The LDA examination yielded the following results: recall = 56.522%, accuracy = 56.522%, precision = 79.13%, and F1score = 65.942%. It has been demonstrated that discriminant analysis, particularly LDA, is useful for classification, as QDA has not shown itself to be the most effective method in this instance.
References
C. Amelia and Y. Aryaneta, “Pengaruh Musik Terhadap Emosi,” vol. 4, pp. 49–57, 2022
E. Nola and D. Putri, “Integrasi Lagu dalam Rencana Pembelajaran Tematik di Sekolah Dasar,” vol. 1, pp. 53–56, 2023
S. Subiyantoro and S. Mulyani, “Kegunaan Multimedia Interaktif Dalam Pembelajaran Bahasa Inggris,” J. Edudikara, vol. 2, no. 2, pp. 92–100, 2017
D. Setiaji, “Tinjauan Karakteristik Dangdut Koplo Sebagai Perkembangan Genre Musik Dangdut,” Handep, vol. 1, no. 1, pp. 19–34, 2017
M. F. Maulana, “Dangdut Koplo: Tubuh, Seksualitas dan Arena Kekuasaan Perempuan,” Muqoddima J. Pemikir. dan Ris. Sosiol., vol. 1, no. 2, pp. 197–210, 2020, DOI: 10.47776/mjprs.001.02.07
N. Vera, “Representasi Erotika Dalam Lirik Lagu Dangdut (Analisis Bahasa Kritis Terhadap Lirik LaguDangdut),” Communication, vol. 8, no. 1, p. 66, 2017, DOI: 10.36080/comm.v8i1.652
E. Y. Lutfiani and T. Anggarawati, “Penerapan Terapi Musik Dangdut Ritme Cepat Terhadap Perbedaan Tingkat Depresi Pada Pasien Depresi Di Rsjd Dr. Amino Gondhohutomo Provinsi Jawa Tengah,” vol. 4, no. 1, pp. 16–21, 2019
W. Al Basith, “Peran Dakwah Rhoma Irama Melalui Seni Musik Dangdut Tahun 1975-2003,” 2019
I. Fitriyadi and G. Alam, “Globalisasi Budaya Populer Indonesia (Musik Dangdut) di Kawasan Asia Tenggara,” Padjadjaran J. Int. Relations, vol. 1, no. 3, p. 251, 2020, DOI: 10.24198/padjir.v1i3.26196
M. H. B. Raditya, “Dangdut Koplo : Memahami Perkembangan Hingga Pelarangan,” J. Stud. Budaya Nusant., vol. 1, no. 1, pp. 10–23, 2017.
N. Syahruddin et al., “Keterpaparan Pornografi Terhadap Perilaku Seks Remaja SMPN di Kota Tangerang Selatan,” J. Healthc. Technol. Med., vol. 9, no. 1, pp. 2615–109, 2023, DOI: https://doi.org/10.24198/padjir.v1i3.26196.
N. T. Rahmanda, “Perkembangan Dan Dampak Musik Dangdut Koplo Bagi Remaja Di Desa Pendowoharjo Bantul,” Perpust. ISI Jogjakarta, no. May, pp. 1–11, 2018.
F. Gunawan, “Pornoteks dalam Lirik Lagu Dangdut: Refleksi Pendidikan Karakter Masa Kini,” J. Ta’dib, vol. 8, no. 1, pp. 1–18, 2015.
D. R. Utari, A. Wibowo, and A. A. Sobari, “Pemrosesan Bahasa Alami pada Data Twitter untuk Penyajian Informasi Jalan dan Lalu Lintas,” Senamika, no. April, pp. 756–765, 2021, [Online]. Available: https://conference.upnvj.ac.id/index.php/senamika/article/download/1419/1026.
B. S. Al Ar Fanny, J. M. Y. Zia Ul Haq, D. Q. Utama, and Adiwijaya, “Aplikasi Pengenalan Gejala Penyakit dengan Pemrosesan Bahasa Alami,” e-Proceeding Eng., vol. Vol. 8, no. No. 2, pp. 2987–2998, 2021
R. Wang, “Comparison of Decision Tree, Random Forest and Linear Discriminant Analysis Models in Breast Cancer Prediction,” J. Phys. Conf. Ser., vol. 2386, no. 1, 2022, DOI: 10.1088/1742-6596/2386/1/012043
B. Ghojogh and M. Crowley, “Linear and Quadratic Discriminant Analysis: Tutorial,” no. 4, pp. 1–16, 2019, [Online]. Available: http://arxiv.org/abs/1906.02590
Z. P. Putra and A. Nugroho, “Pebandingan Performa Naïve Bayes dan KNN pada Klasifikasi Teks Sentimen Jasa Ekspedisi,” JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 6, no. 3, p. 145, 2021, DOI: 10.31328/jointecs.v6i3.2635
M. Hatamian, J. Serna, and K. Rannenberg, “Revealing the unrevealed : Mining smartphone users privacy perception on app markets,” Comput. Secur., vol. 83, no. 675730, pp. 332–353, 2019, DOI: 10.1016/j.cose.2019.02.010
C. F. Suharno, M. A. Fauzi, and R. S. Perdana, “Klasifikasi Teks Bahasa Indonesia Pada Dokumen Pengaduan Sambat Online Menggunakan Metode K- Nearest Neighbors Dan Chi-Square,” Syst. Inf. Syst. Informatics J., vol. 03, no. 01, pp. 25–32, 2017, doi: 10.29080/systemic.v3i1.191.
M. Anshori, M. S. Haris, and W. Teja Kusuma, “Penerapan Backpropagation Neural Network (BPNN) Untuk Prediksi Kecanduan Smartphone Pada Remaja,” Cices, vol. 9, no. 2, pp. 192–202, 2023, DOI: 10.33050/cices.v9i2.2701
W. A. Kusuma and L. Husniah, “Skeletonization using thinning method for human motion system,” in 2015 International Seminar on Intelligent Technology and Its Applications, ISITIA 2015 - Proceeding, Aug. 2015, pp. 103–106
A. E. Minarno, Y. Munarko, A. Kurniawardhani, and F. Bimantoro, “Texture Feature Extraction Using Co-Occurrence Matrices of Sub-Band Image For Batik Image Classification,” in Information and Communication Technology (ICoICT), 2014, pp. 249–254, DOI: https://doi.org/10.1109/ICoICT.2014.6914074