Comparing Discriminant Analysis Function for Early Prediction of Smartphone Addiction

  • Mufid Musthofa Brawijaya University
  • Mochammad Anshori Institut Teknologi, Sains, dan Kesehatan RS.DR. Soepraoen Kesdam V/BRW
Keywords: smartphone addiction, healthinformatics, LDA, QDA, machine learning, discriminant analysis

Abstract

The pervasive use of smartphones in daily life has led to significant benefits, but excessive use has caused alarming behavioral and health issues, particularly among adolescents. Addressing smartphone addiction requires early detection to enable timely interventions. This study investigates the application of machine learning, specifically Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA), for the early prediction of smartphone addiction. The research used a dataset containing 394 instances categorized into "addicted" and "non-addicted" classes. Dataset is derived from questionnaire responses. After preprocessing steps, including feature selection and ordinal encoding, the data was split using 10-fold cross-validation to ensure robust evaluation. The models were assessed using metrics such as accuracy, precision, recall, and F-measure. Results indicate that LDA significantly outperforms QDA across all metrics, achieving an accuracy of 94.16%, a precision of 94.2%, a recall of 94.2%, and an F-measure of 94.2%. Additionally, the Receiver Operating Characteristic (ROC) curve analysis showed an Area Under the Curve (AUC) of 0.9875 for LDA, indicating its high reliability and stability in classifying smartphone addiction. QDA, while effective, has a slightly lower performance due to the linear separability of the dataset. This study concludes that LDA is a robust and effective method for early prediction of smartphone addiction, offering valuable insights for health monitoring systems. The findings provide a foundation for future applications of discriminant analysis in addressing behavioral health issues.

Downloads

Download data is not yet available.

References

[1] J. Park, J. E. Jeong, S. yeon Park, and M. J. Rho, “Development of the Smartphone Addiction Risk Rating Score for a Smartphone Addiction Management Application,” Front. Public Heal., vol. 8, no. September, pp. 1–11, 2020, doi: 10.3389/fpubh.2020.00485.
[2] J. E. Chung et al., “Smartphone addiction risk and daytime sleepiness in Korean adolescents,” J. Paediatr. Child Health, vol. 54, no. 7, pp. 800–806, 2018, doi: 10.1111/jpc.13901.
[3] M. Dhamayanti, R. G. Dwiwina, and R. Adawiyah, “Influence of Adolescents ’ Smartphone Addiction on Mental and Emotional Development in West Java , Indonesia Pengaruh Kecanduan Gawai pada Perkembangan Mental dan Emosional Remaja di Jawa Barat , Indonesia,” J. Med., vol. 51, no. 38, pp. 46–52, 2019, doi: 10.15395/mkb.v51n1.1577.
[4] C. F. Giraldo-jiménez, J. Gaviria-chavarro, A. Urrutia-valdés, J. F. Bedoya-pérez, and M. O. Sarria-paja, “Machine-Learning Predictive Models For Dependency On Smartphones Based On Risk Factors,” pp. 1–29, 2021, doi: 10.21203/rs.3.rs-886633/v1.
[5] J. E. Ding et al., “Development Of A Smartphone Overuse Classification Scale,” Addict. Res. Theory, vol. 27, no. 2, pp. 150–155, 2019, doi: 10.1080/16066359.2018.1474204.
[6] J. Lee and W. Kim, “Prediction of problematic smartphone use: A machine learning approach,” Int. J. Environ. Res. Public Health, vol. 18, no. 12, 2021, doi: 10.3390/ijerph18126458.
[7] A. Sediyono and A. Ariwibowo, “Software requirement specification of intelligent system for monitoring and preventing smartphone addiction,” Proceeding 2017 Int. Conf. Smart Cities, Autom. Intell. Comput. Syst. ICON-SONICS 2017, vol. 2018-Janua, pp. 54–58, 2017, doi: 10.1109/ICON-SONICS.2017.8267821.
[8] J. A. Olson et al., “Smartphone addiction is increasing across the world: A meta-analysis of 24 countries,” Comput. Human Behav., vol. 129, pp. 1–35, 2022, doi: 10.1016/j.chb.2021.107138.
[9] O. Okfalisa, E. Budianita, M. Irfan, H. Rusnedy, and S. Saktioto, “The Classification of Children Gadget Addiction: The Employment of Learning Vector Quantization 3,” IT J. Res. Dev., vol. 5, no. 2, pp. 158–170, 2020, doi: 10.25299/itjrd.2021.vol5(2).5681.
[10] I. D. Amalya, A. Rizqi, and F. A. Fadjri, “The Relationship Between Smartphone Addiction and Loneliness Among Students,” Proc. ICECRS, vol. 8, pp. 4–9, 2020, doi: 10.21070/icecrs2020421.
[11] W. Lawanont and M. Inoue, “A development of classification model for smartphone addiction recognition system based on smartphone usage data,” Smart Innov. Syst. Technol., vol. 73, pp. 3–12, 2018, doi: 10.1007/978-3-319-59424-8_1.
[12] L. N. Filaili, H. Rosyita, and P. Rahmawati Handayani, “Kecanduan Smartphone Dengan Kepercayaan Diri Pada Remaja Usia 12-15 Tahun Tingkat Sekolah Menengah Pertama Di Kecamatan Kramat Jati, Jakarta Timur,” J. Teknol. Inf., vol. 7, no. 2, pp. 116–123, 2021, doi: 10.52643/jti.v7i2.1905.
[13] R. Katarya and S. Maan, “Predicting mental health disorders using machine learning for employees in technical and non-technical companies,” Proc. 2020 IEEE Int. Conf. Adv. Dev. Electr. Electron. Eng. ICADEE 2020, no. Icadee, 2020, doi: 10.1109/ICADEE51157.2020.9368923.
[14] R. Wang, “Comparison of Decision Tree, Random Forest and Linear Discriminant Analysis Models in Breast Cancer Prediction,” J. Phys. Conf. Ser., vol. 2386, no. 1, 2022, doi: 10.1088/1742-6596/2386/1/012043.
[15] B. Ghojogh and M. Crowley, “Linear and Quadratic Discriminant Analysis: Tutorial,” no. 4, pp. 1–16, 2019, doi: 10.48550/arXiv.1906.02590.
[16] W. Suprianto and D. Wanda, “Datasets for Smartphone Addiction and Cyberbullying Prevalence in Early Adolescents,” vol. 3, 2021, doi: 10.17632/M6S3D8KVSM.3.
[17] Kedar Potdar, Taher S. Pardawala, and Chinmay D. Pai, “A Comparative Study of Categorical Variable Encoding Techniques for Neural Network Classifiers,” Int. J. Comput. Appl., vol. 175, no. 4, p. 375, 2017, doi: 10.5120/ijca2017915495.
[18] M. Anshori and M. S. Haris, “Predicting Heart Disease using Logistic Regression,” Knowl. Eng. Data Sci., vol. 5, no. 2, p. 188, 2022, doi: 10.17977/um018v5i22022p188-196.
[19] M. Anshori, F. Mar’i, and F. A. Bachtiar, “Comparison of Machine Learning Methods for Android Malicious Software Classification based on System Call,” Proc. 2019 4th Int. Conf. Sustain. Inf. Eng. Technol. SIET 2019, pp. 343–348, 2019, doi: 10.1109/SIET48054.2019.8985998.
[20] M. Anshori, F. Mahmudy, and A. A. Supianto, “Preprocessing Approach for Tuberculosis DNA Classification using Support Vector Machines ( SVM ),” J. Inf. Technol. Comput. Sci., vol. 4, no. 3, pp. 233–240, 2019, doi: https://doi.org/10.25126/jitecs.201943113.
[21] G. B. G. Pereira, L. P. Fernandes, J. M. R. D. S. Neto, H. D. D. M. Braz, and L. D. S. Sauer, “A comparative study of linear discriminant analysis and an artificial neural network performances in breast cancer diagnosis,” 2020 Ieee Andescon, Andescon 2020, 2020, doi: 10.1109/ANDESCON50619.2020.9272057.
[22] H. W. Wibowo, M. Hasbi, and M. Anshori, “Use Discriminant Analysis to Identify Eroticism-Related Terms in The Lyrics of Dangdut Songs,” J. Enhanc. Stud. Informatics Comput. Appl., vol. 1, no. 1, pp. 17–22, 2024, doi: 10.47794/jesica.v1i1.5.
[23] S. Guo and H. Tracey, “Discriminant Analysis for Radar Signal Classification,” IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 4, pp. 3134–3148, 2020, doi: 10.1109/TAES.2020.2965787.
[24] M. M. Islam, A. K. M. Masum, S. Abujar, and S. A. Hossain, “Prediction of chronic Insomnia using Machine Learning Techniques,” 2020 11th Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2020, 2020, doi: 10.1109/ICCCNT49239.2020.9225570.
[25] E. Frank, M. A. Hall, and I. H. Witten, “The WEKA workbench,” Data Min., pp. 553–571, 2017, doi: 10.1016/b978-0-12-804291-5.00024-6.
Published
2025-02-28
How to Cite
[1]
M. Musthofa and M. Anshori, “Comparing Discriminant Analysis Function for Early Prediction of Smartphone Addiction ”, JESICA, vol. 2, no. 1, pp. 1-7, Feb. 2025.